

<u>Lithography-based</u> <u>Metal</u> <u>Manufacturing</u>

Gerald Mitteramskogler

Vienna, 11th Mai 2018

Welcome to Lithoz

Company overview – focus on LMM

About Lithoz

System provider for additive manufacturing of ceramics

- Spin-off of the Vienna University of Technology (TU Wien)
- Market and innovation leader for precise and dense ceramic
- Development, production and sales of machines and material
- O Customer specific solutions

LCM Printer CeraFab 7500

Lithoz Story

Different materials

LMM-Technology Lithography-based Metal Manufacturing

Lithography-based Metal Manufacturing

LMM

- Indirect Vat Polymerization AM method
- Debinding and sintering step
- O Top Down VP machine setup
- O Photo-reactive feedstock
- O Pro: Light projection highly accurate

© Copyright Lithoz 2016

Photopolymerization

LMM

Current Machine HD40

- O Desktop machine designed for material testing and small-scale production
- O Building volume 75 x 43 x 100 mm³ (X Y Z)
- Resolution X,Y = 40 μ m (Projector)
- Resolution Z = 5- 100 μm
- O Print speed 6 mm/h in Z => app. 20 cm³/h
- Open material system
- O Machine available Q4 2018

Rendering of desktop LMM machine

Postprocessing

Achievable Results with LMM

Participation in benchmark study by

LMM Resuls

MTC Benchmark Study

- O Test of novel AM Processes
- O 32 different Geometries
- Evaluation conducted by MTC
 - Roughness
 - Mech. properties
 - Microstructure
 - Resolution/Accuracy

Testjob for MTC parts (43 x 75 mm²)

316L stainless steel

Evaluation of surface roughness

- Surfaces in various angles
- O Alicona Confocal Microscopy
- Evaluation of Ra and Sa (4 x 3,8 mm)
- O Top, side, bottom surface evaluate

LMM Results

J. C. Fox, S. P. Moylan, and B. M. Lane, "Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing," *Procedia CIRP*, vol. 45, pp. 131–134, Jan. 2016.

LMM Resultate

Mechanical Properties

- O Rods (D 8 mm, L 45 mm) oriented standing in Z direction
 - Tensile testing
 - Printed and tested in "weakest" direction
 - Surface machined

LMM Results

* T. M. Mower and M. J. Long, "Mechanical behavior of additive manufactured, powder-bed laser-fused materials," *Materials Science and Engineering: A*, vol. 651, pp. 198–213, Jan. 2016.

** H. Miura, R. Toyofuku, T. Baba, and T. Honda, "Fatigue Rupture Properties of SUS316L Stainless Steels Produced by Metal Injection Molding.," Journal of the Japan Society of Powder and Powder Metallurgy, vol. 44, pp. 432–436, May 1997.

316L stainless steel

Evaluation of Microstructure

- O Block 10 x 10 x 10 mm³
- >98% of the theoretical density
- O Chemistry OES: Arc Spark

Analyzed	Min	Max	Found	Units
Nickel			10.43	%
Chromium			17.00	%
Manganese			0.62	%
Silicon			0.53	%
Carbon			0.05	%
Sulfur			< 0.004	%
Phosphorus			0.018	%
Molybdenum			2.36	%
Copper			0.09	%
Hydrogen			5 ppm	%
Nitrogen			0.0005	%
Oxygen			0.0011	%
Iron			REM	%

Measurement conducted by MTC according to ASTM E1086-14 and ASTM E1019-11

Optical microscopy image of test cube (10x10x10mm³)

316L stainless steel

Evaluation of tooling factor

- Comparison of original STL to sintered component
- Cube 10 x 10 x 10 mm³
- X,Y, Z shrinkage compensation used
 1,2
- New value: X, Y = 1,21 ; Z = 1,217

Test cube with uniform tooling factor 1,2

Printed Parts

316L Stainless Steel

Printed Parts

Printed Parts

316L stainless steel

Evaluation of resolution

Comparison of original STL to sintered component

316L stainless steel

Printing of Sintering Support

Design and printing of sintering support possible in single step

LMM of Ti6Al4V First results

Introduction

Detail of Run

- O Placement on building platform without support structures
- 26 mm building height (Z direction) = 520 layers
- Volume nesting with software, 18% usage of volume
- 1 scaled by factor 1,2
- Shrinkage due to sintering only estimated!

Results

Selection of Green Parts after Printing

- Cleaning needs to be improved to avoid small surface defects
- Selection of proper solvents
- 4,4 g/cm³ (98% rel.)

Conclusion

Conclusion

What is LMM?

- O MIM-like AM Process based on stereolithography
 - Same metal powder & and furnace equipment for debinding/sintering
- O Robust AM process
 - Easy handling of machine and preparation of printing jobs
 - Easy material change
- O No danger to the operator (no metal dust or high-power laser)
- O Proof of Concept for 316L stainless steel
 - Highest surface quality achievable compared to other AM processes
 - Known material properties
 - Good accuracy and resolution
- O Material development focus on Ti6Al4V
- First trials WC/Co, Cu, SiC, W, Mo

Acknowledgements

Gerald Mitteramskogler Tel: +43 1 9346612 - 203 gmitteramskogler@lithoz.com

Manufacture the future.